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Abstract

We propose a generalised framework to describe the development of scientific models and
simulations as infrastructure assembly. We take our inspiration from Paul Edwards’ classic
account of the emergence of Climate Science as the creation layer by layer of supportive socio-
technical infrastructures over timescales measured in decades leading to a mature simulation
based-discipline able to make authoritative predictions with a significant impact upon policy
formation. Our framework isolates important infrastructural components that appear to be
common in modelling and simulation based science across a number of domains, the sophistication
of which we use as indices to describe the maturity of a given modelling approach. This enables us
to explain otherwise confusing reports from the literature that alternately describe modelling and
simulation based science to be in crisis, or else in a healthy state based upon the degree that
projects studied manage to implement robust software engineering and testing practices.  Equating
innovation in scientific models with long cycles of infrastructure assembly enables us to distinguish
between those modelling approaches that have run into real difficulties, and those that are merely
less mature, enabling better targeting of remedial interventions.
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1 INTRODUCTION

Use of computational models and simulations to underpin scientific research is now commonplace in a
broad range of disciplinary areas including the physical sciences, engineering, economics and the social
sciences. The ubiquity of computational models and their strong contributions to policy formation and
scientific advance, often in economically important or politically contentious arenas such as climate
change, has led to an increasing focus on the quality of the engineering practices used in their production.
A number of scholars have examined the practices of code production and use within science to
understand how scientists can take greater advantage of software engineering 'best practice' to improve
the reliability of their codes. Taken at face value, their findings reflect diverse and often contradictory
accounts of the quality of software engineering and testing practice across a range of scientific
communities. Some papers pessimistically report ‘gridlock’ from ‘divergent values’ of software engineers
and computational scientist (e.g. Faulk et al, 2009; Kelly and Saunders, 2008), while others present a
rosier picture of mature testing practice, and of sophisticated software engineering process (e.g.
Easterbrook and Johns, 2009; Holzworth et al, 2011). Those presenting a negative perspective point to
lack of data against which to test models and simulations, poor use of software process and tools, and
immature testing procedures that rely too heavily on professional judgement. An important concern of
these papers is that errors may go undetected undermining trust in modelling approaches and thereby
degrading their worth.  To make sense of this seemingly disparate array of findings, and informed by
interview data from a pilot study, we developed an analytical framework based on the idea that creation
of models and simulations is inseparable from the creation of infrastructure.

2 INFORMATION INFRASTRUCTURE AND COMPUTATIONAL SCIENCE

The inspiration for our approach came from Paul Edward’s book ‘A Vast Machine’, which charts the
history of climate science from its amateur origins to its present day status as a highly organised and
coordinated set of scientific processes depending on a series of infrastructures that bind together a
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heterogeneous array of current, historical and simulated data, technicians and scientists and models,
simulations and software processes (Edwards, 2010). This summary of Edward’s account forms the
central idea for our analytical framework, which aims to produce a generalised description of how model
and simulation based science advance by the incremental development of supportive infrastructural
components over lengthy timescales – decades in the case of climate science. One example from Edwards
that illustrates this process is the increasing diffusion across wider geographical areas of standardised
referents for the measurement of time, driven initially as a requirement for smooth operation of
developing rail transport infrastructures, and then appropriated as a means of coordinating geographically
dispersed meteorological readings so that they could be meaningfully combined. The increasing
sophistication and predictive power of climate science is shown to be punctuated by a series of
infrastructural innovations that create the necessary supportive elements for ‘next steps’ in the
progression to be made. These infrastructural elements are socio-technical in character, where technical
and non-technical components (such as standards, agreements, processes and collaborations) are mutually
supportive. Another key feature of modelling science revealed by Edwards’ account is the relationship
between the suppliers and consumers of data obtained from the real world. This data is needed by climate
modellers both to inform model parameters (so the models have a basis in reality) and as a source of
validation data (so that the models are tested against reality). Initially, meteorological data collection
networks were created for the purpose of weather forecasting, as opposed to climate modelling, and the
emergence of climate science is also partly the story of the emerging alignment between forecasting and
modelling communities. We elaborate this point below when we discuss our interview data, but
emphasise here that it seems typical for modelling science to be highly dependent on, and have evolving
relationships with, ‘primary’ experimental science communities. The final point to take from Edward’s
work concerns his term ‘Knowledge Infrastructures’ used to convey how infrastructure underwrites the
knowledge claims by providing a foundation of trusted and taken for granted components, processes and
theories upon which new claims can rest. Taken together, these ideas suggest an interpretation of our case
study data whereby the sophistication of a modelling approach and its predictive power varies with the
sophistication and quality of its supportive infrastructures.

3 CASE STUDIES

In a pilot project we have interviewed eight scientists and technicians engaged in model- or simulation
based science to inform the development of a research proposal aimed to assist computational scientists to
adopt software engineering techniques and approaches. Our initial sample was selected by contacting
scientists known to Voss via his existing research into barriers to uptake of advanced technology support
for science. A ‘snowball’ approach was used to identify additional interviewees.  We conducted semi-
structured interviews lasting about an hour in which participants were asked to explain: their modelling
approach and its scientific context; their software engineering and testing practices; and what additional
support would help most to advance their work.  Our interviewees fell into three broad groups: those
creating agent-based models of social phenomena such as crime, population movements and
responsibility (n=4); those working within particle physics creating and interpreting experiments
conducted on the Large Hadron Collider at CERN (n=3) and a data driven scientist involved biomedical
research (n=1). The work of each of these groups is briefly illustrated in the following sketches:

Sketch 1: Particle physics: Experimental work is supported by a large and complex technical
infrastructure created to handle and process the massive volumes of data generated by particle collisions
within the accelerator. A modelling process is used to show what phenomena described by the theory
should look like in the data from actual experiments. A sophisticated series of software processes has
been implemented, including: a tagging system coupled with version control to enable software
configurations used in a given processing chain to be identified and replicated; and a sophisticated series
of nightly software and validation tests to confirm that updates to the software function correctly and are
consistent with scientific understanding. Publications are produced that advance the field of theoretical
physics.

Sketch 2: Data driven science: Data culled from existing biomedical publications assembled through
exhaustive literature searches is used to populate models of human biological processes, for example,
hormonal responses. This data is assembled from tables of data within the papers, or from software that
can reverse-engineer data points from published graphs. The modeller, a computer scientist, works
closely with clinical scientists to establish the quality of the input data and the interpretation and validity
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of the model results. The numerical modelling approaches used are all long established and available as
libraries bundled with routinely used scientific software packages. The aim of the exercise is not to make
scientific discoveries per se, but by pooling a range of historical data to generate hypotheses that can
then be tested by experimental science. The work is however published in the primary literature in the
relevant clinical domains.

Sketch 3: Agent based modelling: By modelling the actions of individuals within a population and
enabling them to interact with each other and their environment it is possible to explore a range of
emergent behaviours by adjusting the ‘rules’ of those interactions. Most of the agent based modellers we
spoke to use existing modelling frameworks to provide basic configurable agent behaviour, and wrote
additional modules to constrain the behaviour of the framework in relevant ways. Those working in
population-based modelling had a series of links to a series of other communities that were able to
provide validation data, but often not at the frequency or granularity that was ideal. None of the agent-
based modellers produced publications that directly advanced the primary scientific field, but instead
published improved modelling approaches.

4 AN ANALYTICAL FRAMEWORK FOR MODELLING PRACTICE

Comparison between the practices of the scientists interviewed in our pilot also revealed differences in
access to validation data, sophistication of software process and the maturity of the modelling approach
similar to those reported in the literature briefly reviewed above. However, our interviews also gave the
sense that those deficits were 'appropriate', or at least expectable, given the developmental stage of the
science being undertaken. Moreover, less mature aspects of a model's development did not risk an
erroneous contribution to science because scientists were acutely sensitive to the model's competence, and
were very careful only to make knowledge claims that were proportional to the model's capabilities.
Figure 1 attempts to capture the idea that the maturity of modelling disciplines falls along a spectrum.

Figure 1: How modelling approaches mature with time in terms of their infrastructural components.

Models in an early stage of their career can be found in the bottom left hand corner of the diagram, and
those that are more mature in the top right hand quadrant. From the literature and from our own data we
identify models as increasingly mature with:

 the increasing coupling between data providers and modellers, where experimentation becomes
geared to the modeller’s hunger for data,
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 the emergence of ‘rounded’ and ‘complete’ technical infrastructures – providing access to mature
modelling frameworks, appropriate compute and storage resources, automation, data visualisation
etc.,

 the emergence of governance and standards bodies coordinating activity across a discipline,

 increasing standardisation and automation of testing regimes, and

 increased acceptability of the contribution made by the model to the primary scientific discipline.

If we map our interview sketches onto the diagram we can locate the agent based modellers in the bottom
left hand quadrant because their approach has a number of novel aspects. It relies on partial infrastructural
arrangements which it is seeking to solidify, for example, through strengthening its relationships with
data providers, accessing better compute resources and improved storage, advancing the core modelling
approach, and engaging in community building work to establish standards of acceptability for results
reporting. The particle physicists, with mature practices and infrastructure, can be seen as occupying the
top right hand quadrant of the diagram. The stepped line represents the idea that at any one moment
existing infrastructural arrangements constrain the modelling approach, and that shifts in those
arrangements, whether this be in the form of improved compute resources, better validation data,
improved software process (and so on) enables progress to be made more rapidly. The diagram suggests a
normative picture of even progression along the X=Y line, indicated by the arrow marked (B). In real life
the trajectory of a given modelling approach will more than likely deviate from this line, perhaps to
different degrees and in differing directions over the course of its career. For example, the work of the
data-based scientist has followed a trajectory indicated by the arrow marked (A). They have rapidly
reached the point where they are able to publish results in the primary literature and have achieved this by
taking advantage of pre-existing mature infrastructural components from which they assembled their
solution.

Using this analytical framework we can understand the puzzle box of the apparent variations in effective
delivery of scientific computing reported in the literature.  For example:

“In addition to the challenge posed by obtaining a reliable oracle, it is challenging to determine what
constitutes sufficient validation.  Sometimes the oracle used is too simplistic or not in the range in which
the scientific software will actually be used. S4, who created her own oracle data, describes her dataset
as “simple” and not representative of the data that it will eventually be used to process. Whether this
simple simulated data validates the software adequately enough to justifiably increase her confidence in
the model’s applicability on complex inputs is questionable.”  (Kelly and Saunders, 2008)

If taking a normative view of how models are supposed to be validated, then it seems reasonable to be
concerned that S4 is working with (what looks like) deficient validation data. However, in the context of
our analytic framework this should not be seen as so unusual for a nascent modelling approach. Many
modellers start out by using data that imperfectly matches the model’s requirements, chiefly because there
are no data suppliers creating data tailored to the their needs. Our findings suggest those working on
‘early career’ models appropriate data opportunistically from a range of sources (all of our agent based
modellers worked in this way), none of which are yet geared to deliver data in the format, frequency and
granularity that are ideal from the modellers’ perspective. Both Edward's work and our interviewees
highlight the importance of establishing over time strong sources of empirically based data, in a process
that often takes many years to complete. A general lesson is that the modeller must not only advance their
model, but also the infrastructural components that underpin their modelling work. This can be seen in the
way our interviewees nurture relationships with data providers, and how they develop community
practice and technologies. There are, however, also significant interdependencies between infrastructural
components, meaning that any underdeveloped component can be rate-limiting and impeded the progress
of the entire project. Interdependencies are demonstrated by this quote from one agent based modeller:

“Dynamic data assimilation - which is principally what I'm going to spend the next year looking at with
any luck ...  we're not really at that stage in terms, in terms of the data coming in but  nonetheless that's
kind-of what I'm interesting in.”

Developing a “dynamic data assimilation" approach by itself will not improve the model's performance if
access to improved empirical data is not also forthcoming. This implies that development of separate
infrastructural components needs to keep pace with each other in order for the modelling science to
progress effectively. This phenomenon resembles Hughes’ notion of a 'reverse salient' whereby lag in the
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development of a single system component can jeopardise its viability creating pressure for more
fundamental reconfiguration (Hughes, 1987).

5 MODEL MATURITY SPECTRUM

The model we have outlined and the notion of maturity it encompasses is meant to be interpreted as a
loosely fitting framework to help us think about modelling activities from an infrastructural perspective.
In particular, we do not mean for our account to be a teleological one, whereby each modelling enterprise
strives for some ideal ‘mature state’. Our definition of maturity is a pragmatic and reflects simply the
ability of the modelling approach to advance its primary scientific discipline implying that a mature
infrastructure for one modelling approach might differ significantly in scope and ambition than for
another. Putting it another way, not all modelling approaches grow up to be a climate science or particle
physics equivalent. However, caveats aside, there are a number of important aspects of our case studies
help support and elaborate our framework. Firstly, sophisticated science can be carried out with a
minimum of innovation when important pre-existing infrastructural components can be easily
appropriated, as for our data driven scientists. Secondly, regardless of scale, requirements for similar sorts
of infrastructural components emerged as important for each of our case studies. Thirdly, mature and
sophisticated modelling approaches such as those found in climate and ecology can act as a beacon and
source of inspiration for emerging modelling approaches in other areas. Finally, but not least, that
‘maturity’ is not bounded. For example, those with ‘mature’ modelling approaches (in data driven science
and particle physics) found aspects of their infrastructural arrangements unsatisfactory, and amenable to
improvement.

6 CONCLUSIONS

We argue that advancing a modelling and simulation enabled science depends not only on local iterative
refinements to the approach, but also on the ability to build strong interdisciplinary relationships and
community spanning infrastructures that enable the flow of expertise and resources. Inspired by Edwards,
we have developed an analytical framework that explains the maturation of scientific models and
simulations in terms of the development of their supportive infrastructures, and predicts different
trajectories for projects depending upon their ability to access or create appropriate infrastructural
elements. Our framework allows us to harmonise findings from prior studies by explaining some
instances of apparently worryingly immature practice as being a common feature of modelling
approaches early in their career. Also, the presence of rate-limiting interdependencies suggests that
development of a modelling approach can be hindered by the slower development or neglect of a single
infrastructural component, represented by the trajectory labelled C in figure 1. Some examples of troubled
projects described in the literature can be categorised as being of this type, where the development of
testing regimes and software engineering practices has failed to keep pace with the development of other
components of the modelling infrastructure. The distinction between projects that are merely immature
and those that have a real deficiency is an important one, because helps us both to anchor our judgement
about what is really problematic, and to guide how we might best intervene. Our pilot project was
concerned to understand how scientific modellers can be better supported. The step-like character of
advances in modelling science suggests that assistance should be tailored by identifying those
infrastructural elements currently constraining progress, and by being sensitive to how the project's
maturity will limit the sorts of assistance it is able to absorb.
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